行业资讯

爱发体育电子产品开发综述优选九篇

作者:小编 发布时间:2023-09-23 点击:

  爱发体育EDA技术的基本特征是采用高级语言描述,具有系统级仿真和综合能力。具体而言,设计人员采用“自顶向下”的设计方法,对整个系统进行方案设计和功能划分,然后采用VHDL、Verilog-HDL、ABEL等硬件描述语言对高层次和系统行为进行设计,并通过逻辑综合优化工具生成目标文件,最后系统的电路由CPLD、FPGA或ASIC(专用集成电路)来实现。EDA技术的发展至今已有30年的历程,其大致可分为三个阶段。20世纪70年代为计算机辅助设计(CAD)阶段,人们用计算机辅助进行电路原理图编辑、PCB布局布线,这极大的促进了当时中小规模集成电路的开发和应用,使人们得以从繁杂的机械图的版图设计工作中解脱出来,这是第一代EDA技术。80年代,出现了以计算机仿真和自动布线为核心技术的第二代EDA技术,即计算机辅助工程阶段(CAE),其主要功能:原理图输入、逻辑仿真、电路分析、自动布局布线、PCB后分析,称之为“电路级设计”。90年代后,出现了以高级语言描述、系统级仿真和综合技术为特征的第三代EDA技术。它采用的是一种“自顶向下”的全新设计方法,这种设计方法首先从系统设计入手,在顶层进行功能方框图的划分和结构设计,在方框图一级进行仿真、纠错,并用硬件描述语言对高层次的系统和行为进行描述,在系统一级进行验证,然后用综合优化工具生成具体门电路的网络表,其对应的物理实现级可以用ASIC来完成。由于设计的主要仿真和调试过程是在高层次上完成的,也就有利于早期发现结构设计上的错误,避免了设计工作的浪费,极大地提高了系统设计效率,缩短了产品的研发周期。

  电路级设计工作的流程图如图1所示。设计人员首先确定设计方案,并选择能实现该方案的合适元器件,然后根据元器件设计电路原理图,接着进行第一次仿真,其中包括数字电路的逻辑模拟、故障分析等,其作用是在元件模型库的支持下检验设计方案在功能方面的正确性。仿真通过后,根据原理图产生的电气连接网络表进行PCB板的自动布局布线。在制作PCB之前,还可以进行PCB后分析,并将分析结果反馈回电路图,进行第二次仿真,称之为后仿真。其作用是检验PCB板在实际工作环境中的可行性。综上所述,EDA技术的电路级设计可以使设计人员在实际的电子系统产生以前,就“已经”全面了解系统的功能特性和物理特性,从而将开发风险消灭在设计阶段,缩短开发时间,降低开发成本。

  随着技术的进步,电子产品的更新换代日新月异,产品的复杂程度得到了大幅增加,以前鉴于电路级设计的EDA技术已不能适应新的形势,必须有一种高层次的设计方法,即“系统级设计”。其设计流程图如图2所示。基于系统级的EDA设计方法其主要思路是采用“自顶向下”的设计方法,使开发者从一开始就要考虑到产品生产周期的诸多方面,包括质量成本、开发周期等因素。第一步从系统方案设计入手,在顶层进行系统功能划分和结构设计,第二步用VHDL、Verilog-HDL等硬件描述语言对高层次的系统行为进行描述;第三步通过编译器形成标准的VHDL文件,并在系统级验证系统功能的设计正确性;第四步用逻辑综合优化工具生成具体的门级逻辑电路的网络表,这是将高层次的描述转化为硬件电路的关键;第五步将利用产生的网络表进行适配前的时序仿真;最后系统的物理实现级,它可以是CPLD、FPGA或ASIC。

  设计一个四位二进制同步计数器。同步计数器是指在时钟脉冲(CP)的控制下,构成计数器的各触发器状态能够同时发生变化。该计数器带异步复位,计数允许,四位二进制同步计数器电路,如图3所示,其线用VHDL(VeryHighSpeedIntegratedCircuitHardwareDescriptionLanguage)来设计

  即验证系统设计模块的逻辑功能。设计人员可以利用EDA工具,运用测试平台的方法来进行验证。测试平台可以实现自动地对被测试单元输入信号测试矢量,并且通过波形输出,文件记录输出或与测试平台中的设定输出矢量相比较,验证仿真结果。本系统输入CP,CLR,EN三个信号,可以得到其输出波形。经验证,系统逻辑功能正确。(注:一般较简单的系统也可忽略这一步)。

  所谓逻辑综合,即是将较高抽象层次的描述自动地转换到较低抽象层次描述的一种方法,目前的EDA工具提供了良好的逻辑综合与优化功能。它利用综合器对VHDL源代码进行综合,优化处理,并将设计人员设计的逻辑电路图自动转化为门级电路,并生成相应的网络表文件。一般的逻辑综合过程如图4所示。

  即验证系统设计模块的时序关系。本系统在输入CP、EN、CLR三个信号下,可以输出时序波形图。从时序波形图可知,系统的延迟时间符合设计要求。(时序图略)3.6编程下载经过以上几个设计步骤以后,设计人员在确定设计系统基本成功以后,即可通过编程器或下载电缆下载数据流进行硬件验证。最后物理实现级通过ASIC形式实现。

  以工作过程为导向的课程教学方式,已成为近年来职业教育课程改革的热门话题。工作过程导向的课程的实质,在于课程的内容和结构追求的不是学科架构的系统化,而是工作过程的系统化。单片机课程作为高职高专院校电子、电气、机电、计算机与通信等专业的一门专业课,是一门综合性和实践性较强的课程,适合按照工作过程导向的模式组织教学。单片机课程的教学目的是为从事电子产品、机电产品设计的企业培养具有单片机应用产品设计、分析、调试和创作能力的实践性人才,单片机应用的过程就是用单片机设计产品的过程。以电子产品作为单片机课程的教学载体,将产品的设计制作过程与单片机的知识点有机结合组织教学内容,可以抓住单片机教学的切入点和着力点,教学过程有明确的实践目标――完成电子产品设计,紧密联系单片机应用的实践,有利于提高学生的学习积极性和主动性,提高教学效果。本文以“循环流水灯”、“电子钟”、“温度测量报警系统”三个电子产品作为教学载体,按照系统化的工作过程系统化教学模式,构建单片机课程系统化的学习情境。

  作为教学载体的电子产品应具有完整性。工作过程系统化的教学模式要求每个学习情境都是一个完整的过程,因此作为教学载体,它应是具有完整功能的电子产品,它的设计制作过程应当是一个完整的项目制作过程,包括如图1所示单片机应用产品的设计步骤。

  和传统教学方法中的实验有本质区别,传统的实验仅仅是为了验证部分理论知识的正确性,而“循环流水灯”、“电子钟”、“温度测量报警系统”在现实中都有产品原型,“循环流水灯”的原型是五彩缤纷的霓虹灯,“电子钟”的原型是学生都比较熟悉的电子手表,“温度测量报警系统”是典型测量控制系统。

  作为教学载体的电子产品应具有系统性。根据工作过程系统化教学模式的要求,学习情境之间不仅要有内在的联系,而且不能是简单的重复,前面的学习情境是后面学习情境的基础,后面的学习情境是在前面基础上的拓展与综合。以上述三个产品为载体设计的学习情境,实施过程的步骤是重复的,而实施的内容上则是包含递进的,是一个螺旋上升的学习过程,在硬件设计、程序设计、软件工具使用、调试方法等方面都是包含和逐步递进的。以硬件设计为例,“循环流水灯”用I/O(输入/输出)口输出开关量,控制灯亮灭,“电子钟”用I/O口输出数据,在显示器件上显示字符,“温度测量报警系统”用I/O口输出其他芯片的工作时序,控制其他芯片按设定的方式工作。

  作为教学载体的电子产品应具有拓展性。根据工作过程系统化教学模式的要求,学习情境应具有拓展性,拓展性是指学习情境应涵盖课程的所有知识点和该课程在实践中的典型工作任务。上述三个产品为载体的学习情境,涉及单片机所有资源应用:I/O口的输入、输出,外部中断,定时/计数器,串行口等,涉及单片机应用中的典型工作任务:开关量的输入输出控制、显示电路设计控制、键盘电路设计控制、并行接口器件扩展控制、串行接口器件控制和串行通信控制等。学生通过这些系统化的学习情境学习,可以掌握单片机应用产品的开发步骤、环节,掌握单片机资源的应用方法、步骤和技巧,并能应用于其他电子产品的设计中。

  从图1可知,单片机应用产品的开发是一个综合的系统工程,需要开发人员具有相应的职业能力、职业素养和工程意识。这里的职业能力是指基于单片机应用产品开发过程的职业技能,包括电子产品功能分析分解、资料检索引用、单片机资源调配、硬件电路设计、软件程序设计与调试、编程软件使用、产品制作调试、技术文件编制等。职业素养是基于企业文化的职业素质,包括认真努力、严谨规范、吃苦耐劳、遵纪守时、求真务实、团结协作、拓展创新等素养。工程意识是从社会经济角度考虑的最优设计制作方案,包括成本意识、安全性、可靠性、节能、环保等。本课程在教学组织中将职业能力、职业素养和工程意识的培养有机结合起来,特别是后二者融入教学体系中,更加突出了工学结合的特点,实现单片机课程的培养目标,包括知识目标和能力目标。

  为便于课堂教学的组织实施,将每一个学习情境分解为几个学习任务(或子情境),如表1所示。在每个任务里学习相关的单片机知识点,进行相应的实践制作活动,完成相应的职业能力、职业素养和工程意识的训练,每个学习情境最后的学习任务都是对前面任务的综合。

  每个学习情境的实施按照图1所示单片机应用产品的开发步骤进行,依照“资讯、计划、决策、实施、检查、评估”的六步骤组织教学内容,将学生的职业能力、职业素养和工程意识的培养融于教学的过程中,针对不同的阶段采用恰当的教学方法。下面以第二个学习情境“电子钟设计”为例,简述学习情境的实施情况。在“产品功能分析”阶段,采用案例对比法,引导学生思考讨论,然后确定电子钟所应具有的功能,确定系统方案(功能模块)。在“器件资料准备”阶段,按照系统方案选择所需的器件资料,采用器件资料比较法,考虑器件使用的难易程度和成本。在“功能电路设计”阶段,采用示范引导法,可以将其他系统的对应电路移植并加以改进,或参照器件资料提供的应用电路。在“功能程序设计”阶段,采用积木编程法,先编写模块程序,再逐步综合构成系统软件。在“系统功能联调”阶段,采用头脑风暴法,引导学生讨论,按照系统的功能要求调配硬件,调试程序使之实现系统功能。在“产品制作”阶段,采用内外互补法,课外制作,课内检查。在“产品测试”阶段,采用自互评价法,由学生自己以及其他同学对作品进行检查评价,最后老师检查验收,综合学生自互评价,给一个综合的成绩。

  在学习情境的实施过程中,我们充分利用现代教学手段,对于难以理解的内容,制作动态演示的电子课件帮助学生理解掌握,同时注重虚拟仿真技术的学习,依照学习情境开发系列的虚拟项目(Keil C软件模拟,Protues硬件模拟),供学生在课堂课外练习,这些项目也可以通过网络完成训练,突破学习训练在时间、空间上的局限性。另外,我们注重现代交流技术手段的应用,通过QQ群、电子邮件、MSN等建立网上论坛,实现了师生之间、学生之间的多样化交流。

  以产品为载体的单片机课程学习情境设计体现了工作过程系统化课程的工学结合特点,以产品设计制作过程为导向,在“做”中“学”,在“学”中“练”,以练促学,为学生提供了更多实践动手机会,实践能力和综合能力都有很大提高。

  [1] 姜大源.关于工作过程系统化课程结构的理论基础[J].职教通讯,2006,(1):7-9.

  就是以计算机为工具,通过有关的开发软件,用VHDL硬件描述语言完成设计,自动完成编译、分割、布局和仿真等工作,用软件完成设计电子系统到硬件系统的一门技术。

  电子设计自动化(ElectronicsDesignAutomation,EDA)是一门实现电子系统或电子产品自动设计的技术。EDA吸收了计算机科学领域的最新研究成果,以高性能的电子计算机作为工作的平台,促进电子工程的发展。所以说,EDA是电子产品和系统设计的综合技术,也是每个电子工程师都应该了解和掌握的一门技术。EDA是在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的,用硬件描述语言VHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

  EDA技术是指以计算机为工作平台,利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机自动处理完成。EDA技术的基本特征:按照“自顶向下”(Top-Down)全新设计方法,对系统进行结构设计和功能划分,系统的关键电路是用印刷电路板或者专用集成电路来实现的,然后采用硬件描述语言(HDL)对系统硬件进行功能的实现,最后用综合优化工具生成最终的理想器件。以下介绍相关的几个方面。1.2.1“自顶向下”的设计方法很长一段时间里,电子设计的思路基本就是“自底向上”的设计方法,这种设计方法就好像一块块大石头堆建起来的瓦房,不仅效率低、成本高,而且还非常容易出错,缺点显而易见。于是,人们发明了如今所用的一种全新的设计方法“自顶向下”,这种设计方法首先是系统设计,在顶层进行功能方框图的划分和结构的设计。自顶向下的设计方法使系统被分解为各个模块的集合之后,可以对设计的每个独立模块指派不同的工作小组,这些小组可以工作在不同的地点,甚至可以分属不同的单位,最后将不同的模块集成为最终的系统模型,并对其进行综合测试和评价。它较先前的“自顶向上”无论是在设计的时间上,还是过程中错误的减少,都得到了很大的提升。1.2.2ASIC设计集成电路(ApplicationSpecificIntegratedCircuit,ASIC),在集成电路界被认为是一种为专门目的而设计的集成电路。利用EDA技术进行电子系统设计的最后目标是完成专用集成电路ASIC的设计与实现爱发体育。ASIC分为全定制和半定制,全制定是基于晶体管设计方法,设计成本高,周期长;而半定制则是一种约束性的设计方法,其设计简化,周期短,提高了芯片的成品率;和通用的集成电路相比,ASIC的体积更小、功耗更低、性能的提升也相当高;从保密性来讲,其保密性还是相当高的,而且它还具有成本节约等优点。可编程ASIC是专用集成电路的一种,也是应用最为广泛的。可编程逻辑器件的密度高、集成度高、生产方便。1.2.3硬件描述语言硬件描述语言(HardwareDescriptionLanguage,HDL)是一种用形式化的方法来描述数字电路和系统的语言,它是EDA开发中的很重要的设计工具,也是EDA技术的重要组成部分。HDL是对电子系统硬件设计的一种高级计算机语言,用HDL语言,数字电路系统的设计可以逐层展示自己的设计思路,一些复杂的数字电路系统可以用一系列分层次的模块来表达。早期的硬件描述语言,由不同的厂商和开发商开发,彼此之间互不兼容,且不支持多层次的设计,这些层次之间的翻译工作就要由人工完成。而利用VHDL语言的可读性强,更加容易修改和发现错误。VHDL即超高速集成电路硬件描述语言,它作为IEEE标准的硬件描述语言和EDA的重要组成部分,经过十几年的发展、应用和完善,正逐渐被众多设计者所接受,这种高层次的方法已经被广泛采用。VHDL即超高速集成电路硬件描述语言,是一种面向设计的多领域、多层次的全方位的硬件描述语言,这种语言几乎覆盖了以往各种硬件描述语言的功能。VHDL具有以下几个优点:(1)强大的硬件描述能力。可以用来描述系统级电路,也可以用来描述门级电路,设计描述具有多层次。(2)支持广泛、易于修改。VHDL已经成为IEEE标准,目前,多数EDA工具都支持VHDL语言,这种高层次的方法已经被广泛采用。(3)作用强大、设计灵活。它具有作用强大的语言结构,能用简洁明了的源代码来描述复杂的逻辑控制。(4)移植能力强。它是一种标准化的硬件描述预言,同样一个设计描述可是被多种不同的工具所支持,这样就使得设计描述的移植得以实现。(5)工艺转换方便。它的设计不依赖于特定的器件,工艺转换方便。

  现如今,EDA技术发展迅速,已经在教学应用、科研应用、产品设计与制造等方面占据一席之地,发挥着巨大的作用。

  大部分理工科院系都开设EDA课程。让学生在校期间了解EDA技术的基本原理、HDL硬件描述语言描述系统逻辑的方法,模拟仿真电子电路设计,通过实践提升学生的动手与自主能力,为今后从事的工作打下坚实的基础。

  电路设计与模拟仿要使用EWB等工具进行,举个例子,在CDMA无线通信系统中,移动手机和无线基站都工作在相同的频率,每部手机都有自己唯一的序列码,用来区分电话的呼叫。而CDMA的BTS必须能识别这些不同的码序列才能辨别传呼进程,这是通过在输入数据流中探测到特定的码序列来完成的。

  从电视、冰箱、音响到电子玩具等各种电子产品电路,EDA技术在模拟研制、仿真、生产、调试等方面都有着重要的作用。可以说,EDA已经成为电子工业领域必不可少的技术支持。

  当今社会,电子产品发展日新月异,为了既快又好地设计出新的电子产品,提高设计效率和产品性能,设计师需要更加简便快捷的EDA工具,这对EDA技术提出了更高的要求。

  3.1.1向高密度、高速度、宽频带方向发展设计方法的更新得益于电子器件的发展,随着电子产品的飞速发展,高密度、高速度和宽频带的可编程逻辑产品已经成为主流的,这些高密度、大容量的可编程逻辑器件的出现,给现代电子系统(复杂系统)的设计与实现带来了非常大的帮助。设计方法和设计效率有了新的飞跃,带来了器件的巨大需求,这种需求又促使器件生产工艺的不断进步,而每一次工艺的改进,可编程逻辑器件的规模都将有非常大扩展。3.1.2向可预测延时的方向发展现如今的大数据时代,需要处理的数据量越来越大,就需要其具有大的数据吞吐量,而且多媒体技术发展迅速,图像及影像的实时性要求较高,这就需要有高速的硬件系统。为了可以保证图像实时性及稳定性,器件的延时可预测性就是一个重要的因素。所以,逻辑器件的可预测延时是非常重要的。3.1.3向低电压、低能耗方向发展集成技术的飞速发展,工艺水平的日益提升,全世界都掀起了节能的潮流。因此,要适应时代的潮流,半导体工业也必须向低电压、降低能耗方向发展。

  在信息通信领域中,需要优先发展高速宽带信息网、计算机及软件技术、第三代移动通信技术,积极开拓以数字技术、网络技术为基础的新一代信息产品,研发新兴的产业。自动化仪表的技术发展趋势将计算机技术、通信技术进一步的融合,大力地推广信息化。在电子设计的研发中,它可以代替设计者完成电子系统设计中的绝大部分工作,而且可以直接在程序中修改错误,系统功能也不需要硬件电路的支持。随着EDA技术的发展,EDA技术具有更好的开发手段和性价比,具有广泛的市场应用前景。

  从目前的EDA技术来看,其发展趋势是使用普及、应用广泛、工具多样、软件功能强大。中国EDA市场已经日趋成熟,但是大部分的设计是面向PCB制板和ASIC领域,只有小部分的设计是开发复杂的片上系统器件。EDA技术将在自动化仪表的测试技术、控制技术、计算技术等方面有较大的突破,在ASIC和PLD设计方面,以高速、高密度、低能耗、低电压等方面发展。

  EDA技术的应用十分广泛,现在已涉及电子、通信、机械、航天、医学、生物、军事等各个领域。所以无论是生活、学习、还是工作,都离不开EDA。因此,作为一名大专院校电子类专业的学生,我们应该熟练掌握EDA技术用于CPLD/FPGA的开发和知晓EDA技术在未来发展的前景,只有这样才能去适应激烈竞争的环境,在激烈的竞争环境中取得成绩。

  随着我国计算机技术与通信技术等多种先进技术的迅速发展,我国自动化煤矿机电技术逐渐趋于集成化、可靠化、多样化及智能化发展,其在未来的发展十分可观。利用自动化技术能够全面优化煤矿机电系统,实现了煤矿机电系统与外界互联网的相互连接,大大降低了煤矿企业在生产操作中的人工成本,在一定程度上能够促进煤矿企业的可持续发展。

  煤矿机电技术中的自动化主要是指煤矿机械设备或者生产过程及相关管理工作在无人直接参与的状况下,利用自动化设备对整个煤矿生产过程进行自动化检测、信息传输、处理、分析判断及控制操纵等,从而达到预设目标。基于自动化在煤矿机电技术中所发挥的作用上来看,可以说自动化是以一项综合性技术,主要是由计算机技术、微电子技术、信息技术、机械技术及自动控制技术等多种技术融合在一起的交叉技术。自动化在煤矿机电技术中的影响,强化了煤矿机电技术的功能性,在很大程度上带动了我国煤矿业的生产发展。

  自动化技术是在70年代中期逐渐开始在国外煤矿机械中应用,80年代以微电子技术为核心的高新技术兴起,它的出现极大的推动了自动化在煤矿机电技术中的创新应用,其在煤矿企业发展中的应用价值也开始逐渐显露,该技术的应用提高了煤矿机电产品的整体性能。目前自动化技术已经在国外煤矿机械设备及生产发展中逐渐普及,为了提升我国综合实力,我国煤矿企业应积极投身于煤矿机电技术中自动化创新中,充分发挥自动化在煤矿机电技术中的作用。

  煤矿机电技术中的自动化其所产生的作用主要是由自动化产品应用体现的,随着我国煤矿业的迅速发展,我国煤矿企业在生产发展也开始注重煤矿机电技术革新,目前已有部分煤矿企业在煤矿机电技术中加入自动化技术的应用,为了提高煤矿生产的安全性,逐渐开始在煤矿生产中应用自动化产品。煤矿机电自动化产品与传统煤矿机电产品存在较大的区别,自动化产品具有以下几个特点:

  煤矿企业生产操作中所应用的自动化产品具有通信联网功能,其中中央处理设备具有多种通信模块及通信接口,其与各底层的设计及双绞屏蔽通信线进行连接通信,能够达到生产信息交互、联系及集中控制等目的。

  煤矿企业在生产发展中包含了诸多方面的内容,不同的工作环节对自动化产品有不同的要求,为了满足煤矿企业发展需求,现今我国已经涌现了多种多样的自动化产品。随着自动化产品的不断增多,与其配套的传感器种类也越来越多,这一状况给煤矿企业的生产发展带来了一定的机遇。

  以往煤矿企业在生产发展中所使用的煤矿机电产品功能较为单一,而现今煤矿企业所运用的自动化产品大多都融入了多种先进技术,具有较强的功能性,自动化产品逐渐趋于集成化。目前煤矿企业所使用的自动化产品主要是以计算机、可编程控制器、单片机及嵌入式计算机等设备作为核心处理器,将高精度传感器作为煤矿机电信息采集及传输元件,将人机界面作为显示设备,从而合理控制煤矿企业整个安全生产操作。

  煤矿企业中所使用的自动化产品内部基本上都有微处理器设备,现如今微处理器功能日渐强大,从而使自动化产品的功能性也越来越强大。目前我国自动化产品逐渐趋于智能化,原因在于微处理器处理信息的能力及速度不断提高,可供智能集成选择的余量也不断加大。

  上述已经全面阐述了煤矿机电技术中自动化产品独有的特点,由此可见自动化给我国煤矿企业的生产与发展带来了宽广的空间,现今我国自动化技术也随着煤矿业的发展在不断更新与进步,以下是对煤矿机电系统应用自动化的技术分析:

  综合自动化技术是随着我国通信技术及以太网发展起来的,该技术还称之为数字矿山技术,其在应用中主要运用统一工业网络对煤矿企业中所应用的电子系统进行集成化管理,但是该自动化技术存在一定的局限性,其感知手段较为单一,感知网络较为贫乏,在应用中忽略了软件平台的集成,对于我国多种先进技术缺乏有效融合,因此我国综合自动化技术还需要进一步改进与创新。

  矿山物联网技术可以说是综合自动化技术的补充,该技术主要针对综合自动化技术中匮乏的互联网技术及通信技术进行了延伸与拓展。其利用智能装置对煤矿所在位置进行物理感知识别,然后再通过互联网的形式进行传输,运用中央处理器对互联网所传输的信息及西宁处理,从而以信息为依据对煤矿整个操作系统发出控制指令,实现了人与人、物与物、人与物之间的相关信息交流及连接,确保了煤矿企业在生产发展中进行各项决策的合理性与科学性。

  现今,我国经济市场中煤矿机电主流处理器的更新速度较快,多线程多核心的自动化产品在煤矿企业实际生产操作中带来了极大的便利。其运算速度越来越快,储存煤矿生产操作相关信息的能力逐渐提高,而相反的其体积却越来越小,满足了煤矿井下工作需要,其在煤矿企业生产操作中的应用将越来越广泛。诸多煤矿企业在生产操作中所处的工作环境十分恶劣,且工作空间较为狭小,需要具备这些优势的主流处理器。煤矿生产操作具有一定的复杂性,若无法确保其安全生产操作,那么会对工作人员造成一定的安全隐患及生命威胁,因此在未来自动化技术及相关产品研究中,要更加注重自动化技术及自动化产品的安全性与可靠性,从而为煤矿企业生产操作提供强有力的自动化技术支持与安全保障。

  正所谓有创新才有发展,煤矿企业要想在激烈的斗争中占据重要地位,就要与时俱进,对煤矿机电技术不断改革与创新。自动化技术的出现给煤矿机电技术带来了创新源泉,煤矿企业合理应用自动煤矿机电技术不仅能够提高煤矿生产效率,同时还能够确保煤矿生产的安全性,对煤矿企业的发展具有一定的现实意义。

  [1]侯睿.浅谈自动化技术在煤矿机电设备方面的应用[J].煤矿现代化,2010(02).

  现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入以“机电一体化”为特征的发展阶段。

  机电一体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

  机电一体化发展至今已经成为一门有着自身体系的新型学科,随着科学技术的不断发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术及电力电子技术,根据系统功能目标要求,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。

  在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。当前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体。机床联网,实现了中央集中控制的群控加工。

  机电一体化的发展大体可以分为三个阶段:(1)20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起到了积极的作用。那时,研制和开发从总体上看还处于自发状态。

  由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

  (2)20世纪70-80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的出现,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在世界范围内得到比较广泛的承认;机电一体化技术和产品得到了极大发展;各国均开始对机电一体化技术和产品给予很大的关注和支持。

  (3)20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支。

  我国是从20世纪80年代初才开始进行这方面的研究和应用。国务院成立了机电一体化领导小组,并将该技术列入“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用做了大量的工作,取得了一定成果。但与日本等先进国家相比,仍有相当差距。

  机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展。机电一体化的主要发展方向大致有以下几个方面:1.智能化智能化是21世纪机电一体化技术的一个重要发展方向。人工智能在机电一体化的研究中日益得到重视,机器人与数控机床的智能化就是重要应用之一。

  模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口和环境接口等的机电一体化产品单元是一项十分复杂但又非常重要的事情3.网络化由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。

  微型化兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS)爱发体育,泛指几何尺寸不超过1cm3的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小,耗能少,运动灵活,在生物医疗、军事、信息等方面具有无可比拟的优势。

  工业的发达给人们生活带来巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。

  综上所述,机电一体化和机械制造的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求和产物。当然,与机电一体化和机械制造业相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,他们的发展前景也将越来越光明。

  在微电子技术飞速发展的背景下,数字电子电路的设计的难度也在不断加大,电子产品翻新的速度也在不断加快,这给数字电子电路设计带来了较大的压力。EDA技术是数字电子电路的设计中较为先进的技术爱发体育,具有其他技术不具备的优势,使数字电子电路的设计得到了革命性的发展[1]。EDA技术的优势在于当程序修改错误时,不需要使用额外的硬件电路,且在使用EDA技术进行电子产品设计时能够使电子产品的成本降低和设计周期缩短。因而,EDA技术在数字电子电路设计中得到了越来越广泛的运用,也推动了数字电子电路的设计领域的变革,促进电子产品的发展。对此,我们需要EDA技术在数字电子电路的设计中应用有所了解。

  EDA(ElectronicDesignAutomation,电子设计自动化)技术是逐渐从计算机辅助测试、计算机辅助制造、计算机辅助设计以及计算机辅助工程中发展而来的[2]。该技术主要是将计算机作为载体,在EDA软件平台上,设计者主要采用硬件描述语言VHDL进行设计,进而由计算机自动完成各项工作。EDA技术是一种融合了当前多种新型技术的新技术,它以计算机为载体,将计算机技术、信息技术、电子技术以及智能技术相互融合起来,进而完成电子产品的自动化设计工作,这样有效促进了电路设计的可操作性以及效率性,不仅保障了电路设计的质量和效率,同时也极大地减轻了设计者的工作强度,同时也降低了电子产品的生产成本。具体来说,EDA技术的特点以及EDA技术设计流程如下。

  相比于传统的CAD(ComputerAidedDesign,计算机辅助设计)技术而言,EDA技术具有显著的特点。首先一点,EDA技术在硬件电路选择软件设计方式方面上,它可以选择多种设计输入,如VHDL语言、波形等等,它在完成下载配置前能够在没有硬件设备的情况下能够自行完成。与此同时,它在修改硬件设备也是非常简单、易于操作,这种修改硬件设备的方式和软件程序修改方式非常接近,采用软件测试的方法对其进行测试,这样就能科学有效地设计特定功能的硬件电路[3]。第二点,EDA技术能够仪自动化的形式进行产品直面设计。它可以通过HDL语言和电路原理图等自动化的逻辑编译的相关程序输入其中,并生成相应的目标系统。简单说来,这种技术能够以计算机为依托,从电路功能模拟、电路性能分析、电路的设计以及优化、电路功能的测试和完善等全部流程都可以以自动化的形式实现。第三点,EDA技术具有较高的集成化特点,并可以自身构成片上系统。EDA技术在数字电子电路设计中是以芯片为载体进行设计的一种设计方式。因而,当前大规模集成线路的不断发展能够有效促进繁杂的芯片设计工作的完成,同时也能够完成专业化的集成电路设计[4]。第四点,EDA技术可以大大提高系统升级的工作效率,它能够当场进行目标系统的编程,实现有效的系统升级。第五点,EDA技术具有自动化的特点,且进行技术开发的时间并不长,且能够有效节约设计的费用,避免了资源的浪费,同时EDA技术也具有极大的灵活性和实用性,可操作性较强。

  EDA技术对于数字电子电路设计的意义可以认为是它将推动了数字电子电路设计的一个发展变革,使其进入了一个发展的新时期。传统的电路设计的模式多是以硬件搭试调试焊接的方式,而E-DA技术以计算机自动化的设计模式对传统的电路设计模式进行了创新。EDA技术设计流程主要包含8个流程依次为[5]:设计指标设计输入(将电路系统采用一定的表达式输入计算机,其中包括图形输入以及文本输入)逻辑编译(将设计者在EDA中输入的图形或文本进行有效的编排转化)逻辑综合(将电路中高级的语言转化为低级的,并与基本结构相应射)器件适配(将由综合器产生的网表文件配置到指定文件中,使之能够下载文件)功能仿真(跟进吧算法和仿真库对涉及进行模拟,以验证其涉及是否和要求一致)下载编程(将适配后生成的配置文件和下载文件以编程器下载)目标系统。

  数字逻辑编辑器具有自身的发展历程,一般可以将其分为分立元件、中小型标准芯片以及可编程逻辑器件等三个阶段。对逻辑器分类方面可以将其分为固定逻辑器和可编程逻辑器。其中固定逻辑器的电路是固定的、不可变的,而可编程逻辑器则可以为使用者提供多种逻辑能力,也可以在不同的时间内进行改变,进而完成不同的功能[6]。可编程逻辑器件(programmablelogicdevice,PLD)产生于通用集成电路,根据使用者对器件编程来确定其逻辑功能。可编程逻辑器件具有较高的集成度,一般能够满足大多数数字系统设计的需求。在科学技术快速发展的情况下,可编程逻辑器件也随之不断发展。当前,可编程逻辑器件已经成为解决逻辑方案的首选,这主要是因为它能够根据用户的需求进行相应的产品功能增加以及产品升级,且操作较为简便,具有低成本、低消耗、多功能、高集成性等优势。与此同时,当前一些公司也在不断对其进行研究,不断完善可编程逻辑器件的功能,并获得了较为显著的效果,如Altra公司的FLEX10K的系列产品、Xilinx公司的XC4000的系列产品[7]。

  VHSIC硬件描述语言(Very-High-SpeedInte-gratedCircuitHardwareDescriptionLanguage,VHDL)是电路设计中使用的一种高级语言,主要在20世纪80年代由美国国防部认定的标准硬件描述语言,之后其他公司纷纷推出了VHSIC硬件描述语言设计环境。对此,我们需要对VHSIC硬件描述语言具有一个较为清晰的了解。数字电子电路设计的第一步就是使用EDA技术以及相应的软件开发工具进行设计输入。简单地说就是简要描述电路设计、硬件设计以及测试方法。在设计一些规模不大的数字电子电路时,一般硬件描述的方式为原先的时序波在设计一些大规模的数字电子电路时,其描述方式就需要采用具有较强针对性的硬件描述语言。VHSIC硬件描述语言不仅能够详细描述硬件电路的功能、定时与信号连接的关系,而且还能采用简洁的模式准确描述硬件电路中逻辑较为抽象的部分[8]。由于VHSIC硬件描述语言具有详细准确描述硬件电路功能的特征,因而,VHSIC硬件描述语言成为EDA技术在数字电子电路设计中最为常用的设计输入方式和描述语言。在数字电子电路设计中,VHSIC硬件描述语言已经成为使用最为广泛的硬件电路应用描述语言。这主要是因为VHSIC硬件描述语言具有硬件特点的语句,其结构和语法具有高级计算机具有高度相似性。除此之外,VHSIC硬件描述语言在程序结构上也有着十分明显的优势,它进行实体设计时能够将其设为可视部分和不可视部分。从中可以发现,VHSIC硬件描述语言与综上所述,可以看出VHDL硬件描述语言比传统的其他硬件描述语言相比,如AHDL、VBLE,具有强大的描述功能,能够有效规避器件的复杂结构,进而对数字电子电路设计进行有效的描述[9]。具体说来,与其他硬件描述语言相比,VHSIC硬件描述语言的特点主要有以下几个方面:其一,具有强大的功能以及灵活的设计。这主要是VHSIC硬件描述语言有着功能强大的语言结构,能够采用简短的语言进行复杂逻辑的描述;同时,它也具备多层次的设计功能,支持多种设计方法。其二,具有广泛的支持性,且易于修改。由于VHSIC硬件描述语言已经成为使用最为广泛应用描述语言,因而具有广泛的支持性;由于其结构化和易读化的特征,因而易于修改。其三,系统硬件描述能力强大,VHSIC硬件描述语言可以进行结构描述、寄存器传输描述、行为描述,也可以进行三者混合描述。其四,与器件设计相对独立,在进行VHSIC硬件描述语言可以不用考虑器件设计情况,专心用于VHSIC硬件描述语言设计的优化。其五,移植能力强,能够共享。VHSIC硬件描述语言设计完成后可以将成果进行分享,避免电路的重复设计。除此之外,VHSIC硬件描述语言还具有其他的特征:其一,VHSIC硬件描述语言属于设计输入语言,它能够通过计算机详细描述硬件电路的运行状态,并将其与数字电路的设计系统自动综合。其二,VHSIC硬件描述语言是常用的测试语言,它能够以测试基准对数字电子电路进行可以仿真与模拟,进而判断其功能情况。其三,VHSIC硬件描述语言是标准化语言,它是当前设计语言中使用最为广泛的语言之一,也是当前电子领域普遍认可的标准化语言。其四,VHSIC硬件描述语言是可读性语言,它不仅可以被计算机识读,同时也可以被设计者识读。其五,VHSIC硬件描述语言一种网表语言,它独特的语言结构让其在计算机设计中工作较好,同时它在设计工具间联系的格式中属于低级设计工具,即它在门级网表文件形成中具有相互转化的功能和高度兼容性。

  我们可以通过设计一个数字钟电路来展现E-DA技术在数字电子电路设计中的应用,该数字电路钟能够显示秒、分、时。

  依照EDA技术的设计规范进行分层设计,其内容包括数字钟;时计数、分计数、秒计数以及译码显示;24进位制计数器、60进位制计数器以及译码显示电路。在VHDL语言描述上,要使用VHDL语言对60进位制计数器、24进位制计数器进行描述编程,并将两者进位标准进行调整,使其一致。关于译码显示电路的设计。在设计中可以使用动态译码扫描处理电路进行处理,这能够某个时间点点亮单个数字码而达到6个同时显示的视觉效果,这样不仅将电路能耗降到最低,同时也节约了器件资源,并延长了器件的使用寿命[11]。关于顶层设计,在这一设计中需要建立在底层设计模块的基础上,通过原理图方法将两者进行有机的融合,进而获得一个完整电路。

  现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。

  机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

  机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。

  因此,“机电一体化”涵盖“技术”和“产品”两个方面。只是,机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。即机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的眼神,具有智能化的特征是机电一体化与机械电气化在功能上的本质区别。

  机电一体化的发展大体可以分为3个阶段。20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起了积极的作用。那时研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

  20世纪70~80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的迅猛发展,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:①mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在世界范围内得到比较广泛的承认;②机电一体化技术和产品得到了极大发展;③各国均开始对机电一体化技术和产品给以很大的关注和支持。

  20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面对机电一体化系统的建模设计、分析和集成方法,机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,为机电一体化技术开辟了发展的广阔天地。这些研究,将促使机电一体化进一步建立完整的基础和逐渐形成完整的科学体系。

  我国是从20世纪80年代初才开始在这方面研究和应用。国务院成立了机电一体化领导小组并将该技术列为“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用做了大量的工作,不取得了一定成果,但与日本等先进国家相比仍有相当差距。

  机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展和进步。因此,机电一体化的主要发展方向如下:

  智能化是21世纪机电一体化技术发展的一个重要发展方向。人工智能在机电一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能,则是完全可能而又必要的。

  模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、环境接口的机电一体化产品单元是一项十分复杂但又是非常重要的事。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置。这样,可利用标准单元迅速开发出新产品,同时也可以扩大生产规模。这需要制定各项标准,以便各部件、单元的匹配和接口。由于利益冲突爱发体育,近期很难制定国际或国内这方面的标准,但可以通过组建一些大企业逐渐形成。显然,从电气产品的标准化、系列化带来的好处可以肯定,无论是对生产标准机电一体化单元的企业还是对生产机电一体化产品的企业,规模化将给机电一体化企业带来美好的前程。

  20世纪90年代,计算机技术等的突出成就是网络技术。网络技术的兴起和飞速发展给科学技术、工业生产、政治、军事、教育义举人么日常生活都带来了巨大的变革。各种网络将全球经济、生产连成一片,企业间的竞争也将全球化。机电一体化新产品一旦研制出来,只要其功能独到,质量可靠,很快就会畅销全球。由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术是家用电器网络化已成大势,利用家庭网络(homenet)将各种家用电器连接成以计算机为中心的计算机集成家电系统(computerintegratedappliancesystem,CIAS),使人们在家里分享各种高技术带来的便利与快乐。因此,机电一体化产品无疑朝着网络化方向发展。

  微型化兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS),泛指几何尺寸不超过1cm3的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小、耗能少、运动灵活,在生物医疗、军事、信息等方面具有不可比拟的优势。微机电一体化发展的瓶颈在于微机械技术,微机电一体化产品的加工采用精细加工技术,即超精密技术,它包括光刻技术和蚀刻技术两类。

  工业的发达给人们生活带来了巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前途。机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。

  系统化的表现特征之一就是系统体系结构进一步采用开放式和模式化的总线结构。系统可以灵活组态,进行任意剪裁和组合,同时寻求实现多子系统协调控制和综合管理。表现之二是通信功能的大大加强,一般除RS232外,还有RS485、DCS人格化。未来的机电一体化更加注重产品与人的关系,机电一体化的人格化有两层含义。一层是,机电一体化产品的最终使用对象是人,如何赋予机电一体化产品人的智能、情感、人性显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化。另一层是模仿生物机理,研制各种机电一体花产品。事实上,许多机电一体化产品都是受动物的启发研制出来的。

  综上所述,机电一体化的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。当然,与机电一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机电一体化技术的广阔发展前景也将越来越光明。

  关键词:机电一体化;机械制造;现状;发展趋势现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入以“机电一体化”为特征的发展阶段。

  一、 机 电一体化概述机电 体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。机电一体化发展至今已经成为一门有着 自身体系的新型学科,随着科学技术的不断发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电技术、自动控制技术、计算机技术、信息技术、传感测控技术及 电力电子技术,根据系统功能目标要求,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。

  二、机械制造技术的发展在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处珲、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性 自动化、集成化、智能化起着举足轻重的作用。当前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现 了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM 与数控系统集成为一体。机床联网,实现了中央集中控制的群控加工。

  一)2O世纪 60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不 自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起到了积极的作用。那时,研制和开发从总体上看还处于 白发状态由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。

  二)2O世纪 70-8O年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机 电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的出现,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:

  一 词首先在 日本被普遍接受,大约到 2O世纪 80年代末期在世界范围内得到比较广泛的承认;机电一体化技术和产品得到了极大发展:各国均开始对机电一体化技术和产品给予很大的关注和支持 。

  三)2O世纪90年代后期爱发体育,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入机电,体化,微细加工技术也在机电 体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支。

  我国是从 20世纪 8O年代初才开始进行这方面的研究和应用。国务院成立了机电一体化领导小组,并将该技术列入“863计划”中。在制定“九五”规划和 2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和 由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用做了大量的工作,取得了一定成果。但与日本等先进 国家相比,仍有相当差距。

  四、机电一体化的发展趋势机 电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展。机电一体化的主要发展方向大致有以下几个方面:

  一)智能化智能化,是 21世纪机电一体化技术的一个重要发展方向。人工智能在机电一体化的研究中日益得到重视,机器人与数控机床的智能化就是重要应用之一。

  二)微型化,微型化兴起于 20世纪 8O年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMs),泛指几何尺寸不超过 lc 的机电一体化产品,并向微米、纳米级发展 。

  微机电一体化产品体积小,耗能少,运动灵活,在生物医疗、军事、信息等方面具有无可 比拟的优势。

  三)环保化,工业的发达给人们生活带来巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。机电~体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。

  综上所述,机电一体化和机械制造的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求和产物。

  当然,与机电一体化和机械制造业相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,他们的发展前景也将越来越光明。

  现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入以“机电一体化”为特征的发展阶段。

  机电一体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

  机电一体化发展至今已经成为一门有着自身体系的新型学科,随着科学技术的不断发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术及电力电子技术,根据系统功能目标要求,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。因此,“机电一体化”涵盖“技术”和“产品”两个方面。机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。机械工程技术由纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体系。但是,发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还被赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制、自动诊断与保护等。也就是说,机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的延伸,智能化特征是机电一体化与机械电气化在功能上的本质区别。

  机电一体化的发展大体可以分为三个阶段:(1)20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起到了积极的作用。那时,研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。(2)20世纪70-80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的出现,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在世界范围内得到比较广泛的承认;机电一体化技术和产品得到了极大发展;各国均开始对机电一体化技术和产品给予很大的关注和支持。(3)20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支。

  我国是从20世纪80年代初才开始进行这方面的研究和应用。国务院成立了机电一体化领导小组,并将该技术列入“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用做了大量的工作,取得了一定成果。但与日本等先进国家相比,仍有相当差距。

  机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展。机电一体化的主要发展方向大致有以下几个方面:

  智能化是21世纪机电一体化技术的一个重要发展方向。人工智能在机电一体化的研究中日益得到重视,机器人与数控机床的智能化就是重要应用之一。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,使它具有判断推理、逻辑思维及自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速度的微处理器使机电一体化产品赋有低级智能或者人的部分智能,则是完全可能而且必要的。 转贴于

  模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口和环境接口等的机电一体化产品单元是一项十分复杂但又非常重要的事情。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置等。有了这些标准单元就可迅速开发出新产品,同时也可以扩大生产规模。为了达到以上目的,还需要制定各项标准,以便于各部件、单元的匹配。

  由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术的应用使家用电器网络化已成大势,利用家庭网络(home net)将各种家用电器连接成以计算机为中心的计算机集成家电系统(computer integrated appliance system,CIAS),能使人们呆在家里就可分享各种高技术带来的便利与快乐。因此,机电一体化产品无疑将朝着网络化方向发展。

  微型化兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS),泛指几何尺寸不超过1cm3的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小,耗能少,运动灵活,在生物医疗、军事、信息等方面具有无可比拟的优势。微机电一体化发展的瓶颈在于微机械技术。微机电一体化产品的加工采用精细加工技术,即超精密技术,它包括光刻技术和蚀刻技术两类。

  工业的发达给人们生活带来巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前景。机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。

  未来的机电一体化更加注重产品与人的关系,机电一体化的人格化有两层含义:一层是如何赋予机电一体化产品人的智能、情感、人性等等,显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化;另一层是模仿生物机理,研制出各种机电一体化产品。事实上,许多机电一体化产品都是受动物的启发而研制出来的。

  综上所述,机电一体化的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求和产物。当然,与机电一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机电一体化技术的发展前景也将越来越光明。

推荐资讯
推荐产品